Medan Listrik Kapasitor Pelat Sejajar

By a Guy Who Teaches Physics for Fun
Top page

Apa itu Kapasitor Pelat?

Sebelum mempelajari medan listrik kapasitor, Anda perlu tahu dulu apa itu kapasitor.
Kapasitor adalah dua bidang (pelat atau keping) bermuatan (satu positif dan satu negatif) yang didekatkan secara sejajar.
Muatan total kapasitor adalah nol. Kedua pelat memiliki besar muatan yang sama tetapi tanda yang berbeda. Kapasitor terhubung dengan baterai. Adanya beda potensial yang diberikan baterai membuat elektron mengalir dari pelat satu ke pelat lainnya sehingga salah satu pelat bermuatan positif dengan besar +Q=N(+e) dan pelat lainnya bermuatan negatif dengan besar -Q=N(-e) . Perhatikan gambar di bawah.
Kapasitor terhubung dengan baterai (mobile)

Rumus Medan Listrik Kapasitor

Rumus Medan listrik kapasitor dekstop
Rumus Medan listrik kapasitor mobile
\begin{array}{l} Q=\text{Besar muatan salah satu pelat}\\ \epsilon_{o}=8,854 \times 10^{-12}\;\frac{C^{2}}{Nm^2}\\ A=\text{Luas permukaan pelat} \end{array}
Medan listrik kapasitor mengarah dari pelat positif ke pelat negatif.
Di beberapa buku istilah medan listrik kapasitor juga dikenal sebagai medan listrik keping sejajar atau pelat sejajar.
Share on whatsapp
Share on facebook
Share on twitter
Share on telegram
Bagikan ke Teman Anda

Penurunan Rumus

Kita akan menurunkan rumus medan listrik kapasitor dengan mengingat kembali rumus medan listrik bidang(pelat).
E_{bidang}=\frac{\left | \eta\right |}{2 \epsilon_{0}}
Rumus tersebut menyatakan bahwa besar medan listrik oleh bidang bermuatan tidak bergantung oleh jarak. Kita aplikasikan konsep ini pada kasus 2 pelat sejajar. Perhatikan gambar berikut.
Penjelasan medan listrik kapasitor
Penjelasan medan listrik kapasitor (mobile size)
Perhatikan gambar, muatan listrik kedua bidang berada pada permukaan sisi dalam kapasitor akibat gaya tarik-menarik. Kapasitor dapat dimodelkan sebagai bidang bermuatan tanpa ketebalan sebagaimana  kita bahas pada artikel medan listrik bidang(pelat). Medan listrik oleh bidang +Q dan bidang -Q adalah sama yaitu
E_{+Q}=E_{-Q}=\frac{\left | \eta\right |}{2 \epsilon_{0}}
Perhatikan gambar, medan listrik pada sebuah titik di luar kapasitor adalah nol dikarenakan \overrightarrow{E}_{+Q} dan \overrightarrow{E}_{-Q} memiliki besar yang sama namun tanda yang berbeda. Sedangkan medan listrik di dalam kapasitor memiliki besar yang sama dan arah yang sama sehingga medan listriknya memiliki persamaan berikut.
E_{+Q}+E_{-Q}=2\left (\frac{\eta}{2 \epsilon_{0}} \right )
E_{+Q}+E_{-Q}=\frac{Q}{\epsilon_{0}\;A}
E_{kapasitor}=\frac{Q}{\epsilon_{0}\;A}
Penurunan rumus tersebut menggunakan model di mana bidang bermuatan dianggap memiliki luas tak hingga, alhasil medan listrik di luar kapasitor adalah nol.
Pada dunia nyata, medan listrik di luar kapasitor sebenarnya tidak nol. Medan listrik kapasitor dunia nyata memiliki visualisasi sebagai berikut.
Perbedaan medan listrik kapasitor ideal dan dunia nyata
Perbedaan medan listrik ideal dan dunia nyata (mobile)
Walaupun penurunan rumus kita menggunakan kapasitor ideal, rumus tersebut valid pada kapasitor dunia nyata untuk memperkirakan medan listrik di dalam kapasitor kecuali di dearah dekat tepi kapasitor.

Penutup

Demikianlah pembahasan terkait medan listrik oleh kapasitor pelat sejajar. Anda dapat mempelajari medan listrik oleh titik muatan, batang bermuatan, cincin, piringan, dan bidang/pelat dengan klik teks biru atau lihat pos terkait di bawah ini.
Share on whatsapp
Share on facebook
Share on twitter
Share on telegram
Bagikan ke Teman Anda
Pos Terkait