Model Titik Muatan

By a Guy Who Teaches Physics for Fun

Penjelasan

Model titik muatan adalah pemodelan di mana keseluruhan muatan listrik benda/objek dipusatkan pada sebuah titik. Model ini juga digunakan pada partikel-partikel kecil yang bermuatan listrik.

Penggunaan rumus hukum coulomb F=k \frac{q_{1}q_{2}}{r^2} dan medan listrik E=k \frac{Q}{r^2} hanya berlaku jika benda/objek dapat dimodelkan sebagai titik muatan.

Share on whatsapp
Share on facebook
Share on twitter
Share on telegram
Bagikan Ke Teman Anda

Penggunaan Model Titik Muatan

Berikut adalah contoh-contoh kasus penggunaan model titik muatan:

• Ikatan Ion

Ion adalah sebuah atom atau molekul yang bermuatan listrik. Ion terbentuk akibat penambahan atau pengurangan elektron pada atom atau molekul.
Kation adalah ion yang bermuatan positif dan anion adalah ion yang bermuatan negatif. Contoh ion adalah sebagai berikut.
  • Sodium – Na^{+}
  • Zinc – Zn^{+2}
  • Ammonium – NH^{+4}
  • Chloride – cl^{-}
  • Flouride – F^{-}
  • Nitrite – {NO_{2}}^{-}
Ikatan ion seperti NaCl  yang terbentuk dari kation Na^{+} dan anion Cl^{-}. Kedua ion tersebut dapat dimodelkan layaknya titik muatan dan mengalami gaya coulomb dengan rumus F=k \frac{q_{Na^{+}}q_{cl^{-}}}{r^2}.
Fakta menarik: Semakin kuat gaya coulomb antar ion maka semakin besar pula energi yang diperlukan untuk melepaskan ikatan tersebut, dan semakin besar pula titik lebur ikatan ion tersebut.

• Banyak Titik Muatan ketika Titik P Sangat Jauh

Gambar tidak memiliki ketepatan skala yang baik. Titik P terletak lebih jauh daripada yang terlihat di gambar

Perhatikan gambar di atas, terdapat 3 titik muatan dengan besar muatan yang sama pada sumbu Y dan titik P terletak sangat jauh (r>>d). Ketiga muatan tersebut dapat dimodelkan menjadi satu titik muatan dengan besar muatan +3q.

Anda dapat melihat artikel medan listrik oleh 3 titik muatan untuk melihat pembuktiannya secara matematis. Intinya, ketika titik P sangat jauh kita dapat menggunakan rumus gaya coulomb F=k\frac{+3q\; q_{p} }{r^2} dan rumus medan listrik E=k\frac{+3q}{r^2}.

Kasus tersebut masih sederhana karena titik muatan terletak secara simetris dan dengan besar muatan yang sama semua.  Jika besar titik muatan beragam dan terletak tidak simetris kita sebenarnya tetap dapat memodelkannya sebagai titik muatan namun menentukan besar titik muatan yang mewakili seluruh titik muatan yang ada memerlukan proses matematika yang lebih rumit.

• Cincin, Piringan, dan Bola Bermuatan dengan Titik P yang Sangat Jauh

Gambar tidak memiliki ketepatan skala yang baik. Titik P terletak lebih jauh daripada yang terlihat di gambar
Anda dapat memodelkan cincin, piringan, atau bola sebagai titik muatan jika titik P yang ingin Anda ingin hitung medan listrik atau gaya coulomb-nya sangat jauh (r>>R). Titik muatan yang menjadi perwakilan akan memiliki muatan Q yaitu total muatan seluruh cincin, piringan, atau bola. Anda dapat menggunakan rumus F=k\frac{Q\; q_{p} }{r^2} atau E=k\frac{Q}{r^2}.
Share on whatsapp
Share on facebook
Share on twitter
Share on telegram
Bagikan Ke Teman Anda
Pos Terkait

Tinggalkan Balasan